Synchronization in a
Parallel Matcher

Charles Forgy
October, 2008

Outline

* Background
— Why bother with parallelism
— Rete and parallelism

e Options for synchronization
 PST's new engine

e Making better use of parallelism
* Impact of future hardware

Why Bother With Parallelism?

e “... we find ourselves as an industry turning from
increased frequency to parallelism.” From the
forward to the Intel Technology Journal, Vol 11,
I[ssue 3.

e "We are 1n a parallel revolution, ready or not, and
it 1s the end of the way we built microprocessors
for the past 40 years." From Dave Patterson's
keynote address to Usenix 2008.

Do Systems Need More Speed?

e Some application areas do today (e.g., Event

Processing).
e If faster systems were available, new application

areas would open up.

Rete and Parallelism

e Rete was designed from the beginning to be a
parallel algorithm (though some optimizations
work against that).

* A Rete matcher 1s organized as a network of
agents that cooperate by passing messages.

* As long as a few sequencing rules are followed,
the order in which the messages are processed 1s
unimportant.

 In fact, there have been several parallel Rete
engines built.

Outline

* Background
— Why bother with parallelism
— Rete and parallelism

 PST's new engine
e Making better use of parallelism
* Impact of future hardware

Synchronization

Synchronization 1s arguably the number one 1ssue in

building a parallel matcher.

— To achieve a reasonable balance of work for the
processors, the match must be broken into a fairly large
number of tasks.

— Synchronization overhead can kill performance.

— Synchronization must be handled without impact on
the rest of the system (beware of spin locks).

What is a Thread?

e A program counter.

* A stack and related information (in machine
registers).

* Plus the process state that 1s shared with the other
threads

Why Synchronization is Needed

* To provide safe access to shared, writable state.

— Avoid 1t as much as possible.
e Make shared objects immutable.
» Keep writable state local to threads.

— Where 1t must be used, Java provides a number of good
mechanisms.
e See java.util.concurrent.
 In today's JVM's synchronized blocks are efficient.
e To allocate tasks to threads.

— This 1s mainly what I want to talk about.

Kinds of Synchronization

* Context switch.
e Application-managed threads.
e Busy walits.

Context Switch

e Uses the operating system to suspend and restart
threads.

* Treats a thread like a process, requiring
— Saving and reloading the processor registers.

— Switching to a different stack.
— (Possibly) flushing the caches and TLB's.

e Very expensive.

— “The actual cost of context switching varies across
platforms, but a good rule of thumb is that a context
switch costs the equivalent of 5,000 to 10,000 clock
cycles, or several microseconds on most current
processors.” -- Brian Goetz, Java Concurrency in
Practice.

Busy Wait or Spin Lock

e The thread does not relinquish the processor to
another thread, but rather goes into a loop to wait
for the necessary condition to proceed.

* A spin lock provides the lowest overhead for the
thread that uses 1t, but it uses a processor that
might be used productively by another thread.

Application Managed Threads

e The application 1s given a pool of threads which 1t
assigns to tasks at times of 1ts choosing.

e If implemented correctly, this can have
substantially lower overhead than context
switches.

Outline

* Background
— Why bother with parallelism
— Rete and parallelism

e Options for synchronization

e Making better use of parallelism
* Impact of future hardware

The Requirements

e A Java rule engine.
e For shared-memory multiprocessors.
* Compatible with other Java code.

The Recognize-Act Cycle

vold recognize act()
while (true) {
updateConflictSet () ;
1f (stoppingCondition ())
return;
executeDominantInst () ;

Recognize-Act
Using a Parallel Matcher

vold recognize act() {
while (true) {
allowMatcherThreadsToRun () ;
waltForMatcherThreads () ;
1f (stoppingCondition ())
return;
executeDominantInst () ;

A Matcher Thread

while (true) {
waltForMainThread () ;
performMatch () ;
allowMainThreadToRun () ;

Wait and Allow Methods

* The “wait...” and “allow...” methods can be
implemented in various ways.

e The most direct would be counting semaphores
from the java.util.concurrent package.

e Ultimately, whichever primitive 1s used, the
primitive will employ context switches.

e Using busy waits 1s not appropriate for an engine
that 1s to be used as a component 1n a larger
application.

Parallelism in the Match

* The match threads are managed by the fork-join
framework 1n jsr166y.forkjoin.

» This framework 1s quite efficient and 1s suitable
for tasks as small as 1000 instructions.

A Task in the Matcher

e Fork-join works best when 1t 1s given a few large
tasks which are recursively decomposed into
smaller tasks.

* In this matcher, a task 1s a set of tokens, and a set
of nodes to pass the tokens to.

* A task can be decomposed into smaller tasks by
breaking either set into subsets.

Results

* The new engine 1s significantly faster than OPSJ
for complex event processing tasks.
* Synchronization overheads are too high to make it

appropriate for simple business rule applications.
— Recall that a context swap takes Sk to 10k instruction

times, and two context swaps are required per
recognize-act cycle.

Outline

* Background
— Why bother with parallelism
— Rete and parallelism

e Options for synchronization
 PST's new engine

* Impact of future hardware

Why Don't Business Rules Need
Parallelism?

* On most cycles, the fired rule changes only a few
working memory objects.
 Each change typically affects only a few rules.

How We Could Change This

e Switch from tuple-oriented to set-oriented

conditions.
— Set-oriented conditions are already supported by many
of today's languages.

e Allow multiple rules to fire on each cycle.

Example of Tuple-Oriented
Conditions

rule reverse edges

if {
s: stage(s.value=="duplicate");
l: line(var x=1.pl, var y=1.p2);

} do
insert (new edge(x, V))
insert (new edge(y, X))
delete (1) ;

}

rule done reversing
1f
s: stage(s.value=="duplicate");
'1: line;
} do |
delete(s);
insert (new stage ("detect junctions"));

Example of Set-Oriented
Conditions

rule reverse all edges

if {
s: stage(s.value=="duplicate");
collect 1l: line;
} do {
foreach(line 1lin : 1lList) {
insert (new edge(lin.pl, lin.p2));
insert (new edge(lin.p2, lin.pl));
delete (1lin) ;
}
delete (s);

insert (new stage ("detect junctions"));

Firing Multiple Rules

* There have been many proposals for extending
rule engines to fire multiple rules per cycle.

* | believe this will be successful only 1f the parallel
engines are at least as easy to use as current
sequential rule engines.

Outline

* Background
— Why bother with parallelism
— Rete and parallelism

e Options for synchronization
 PST's new engine
 Making better use of parallelism

Busy Walits

* If we have many cores, there will be less pressure
to keep them productive all the time.

e X86 processors have a pair of instructions,
MONITOR and MWAIT, that allow very efficient

busy waits.
— The processor can stop executing instructions and enter
a special wait state.
— This feature 1s particularly important when
hyperthreading 1s used.

Fork-Join Parallelism

 Intel has a research project to handle fork-join
parallelism 1n hardware.

e Kumar, Hughes, Nguyen, “Architectural Support
for Fine-Grained Parallelism on Multi-core
Architectures,” Intel Technology Journal, vol 11,
issue 3, August 2007.

Conclusions

e Parallelism in rule engines is useful today for
complex problems.
e Parallelism will become more widely applicable in
the near future.
— Systems can incorporate more powerful rules without
becoming harder to write.

— Changes 1n hardware will substantially reduce the cost
of synchronizing threads.

Thank You

